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ABSTRACT.An algorithm is presented for updating finite element
models based upon a minimization of dynamic residuals. The dy-
namic residual of interest is the force unbalance in the homogeneous
form of the equations of motion arising from errors in the model’s
mass and stiffness when evaluated with the identified modal param-
eters. The present algorithm is a modification and extension of a
previously-developed Sensitivity-Based Element-By-Element (SB-
EBE) method for damage detection and finite element model updat-
ing. In the present algorithm, SB-EBE has been generalized to min-
imize a dynamic displacement residual quantity, which is shown to
improve test-analysis mode correspondence. Furthermore, the algo-
rithm has been modified to include Bayesian estimation concepts,
and the underlying nonlinear optimization problem has been consis-
tently linearized to improve the convergence properties. The result-
ing algorithm is demonstrated via numerical and experimental
examples to be an efficient and robust method for both localizing
model errors and estimating physical parameters.

NOMENCLATURE

Nominal mass, damping and stiffness matrices

Experimental frequency (rad/s) for mode

Experimental mode shape vector for mode

Dynamic residual (modal force) vector

Undamped impedance matrix for mode

Measured, unmeasured partitions of

Mode shape projection operator

Parameter sensitivities for mode

Objective function, linearized gradient and Hessian

Approximate covariance matrix of dynamic residual

Covariance matrix of measured mode shape

Covariance matrix of the experimental eigenvalues

Covariance matrix of the initial parameters

Modal assurance criteria

1.  INTRODUCTION

A significant amount of research in structural dynamics system
identification has focused on methods for reconciling finite element
models of structures with modal parameters identified from dynamic
testing. Early approaches to this problem involved the direct updat-
ing of assembled stiffness and mass matrices to correlate to the
available modes and mode shapes identified from test. In order to
choose a particular solution from an infinite number of possible so-
lutions, some quantity, such as the norm of the matrix adjustment,
was minimized. Recent modifications to this general approach in-
volve retaining the connectivity pattern of the model through con-
straints, or minimizing the rank of the matrix update. These methods
are efficient and have been used successfully for both model adjust-
ments and for structural damage detection. For this discussion, this
class of methods can be termed optimal matrix updating.

A fundamentally different approach involves estimating or updating
the “physical” parameters of the structural design, such as cross-sec-
tional areas, elastic moduli, or added masses, used in the finite ele-
ment model definition. There are a number of advantages to such an
approach over optimal matrix updating methods. First, the formula-
tion of the initial model, including its connectivity, is implicitly pre-
served. This is quite important since the original model, if
formulated by a skilled analyst, contains a significant amount of en-
gineering judgement about the structure of interest. Such judgement
supplements the reliable, yet incomplete, knowledge gained from
experimental data. Secondly, results of model updating can be un-
derstood in terms of errors in design parameters or modeling as-
sumptions. This provides a mechanism, at least ideally, for learning
and improving the future modeling of similar structures. Finally, the
updated model is more generally useful for design sensitivity analy-
sis as it retains the flexibility of the finite element method, rather
than being simply a set of equations which predict the limited dy-
namic measurements. This approach is termed sensitivity-based
model updating, as it utilizes the sensitivity of predicted and estimat-
ed quantities, such as modal parameters or response functions, to the
physical parameters of the model.

The present paper addresses the problem of sensitivity-based model
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updating through the minimization of a dynamic residual. This re-
sidual arises due to errors in the model stiffness and mass matrices
and is a reflection of the difference between the model’s predicted
modal parameters and the modal parameters from experimental da-
ta. It is a different approach, however, from directly comparing the
predicted and measured modal parameters and does not require the
computation of the model modes and determination of the corre-
spondence between the model modes and the test modes.This is a
distinct advantage, particularly when such correspondence is diffi-
cult to establish. The present algorithm is a modification and exten-
sion of a previously-developed Sensitivity-Based Element-By-
Element (SB-EBE) method for finite element model updating [1].

The modifications of the basic SB-EBE algorithm are intended to
address a number of practical issues encountered when applying the
algorithm to complex structures. First, a consistent linearization of
the governing minimization problem is derived to improve the rate
of convergence of the algorithm. The new linearization couples the
mode shape projection and parameter estimation stages of the algo-
rithm at a minor computational cost, and improves the estimate of
curvature in the optimization space. Secondly, the residual govern-
ing the update problem is redefined as a displacement, rather than
force, quantity through a flexibility weighting. It is shown that this
weighting improves the correspondence of test and analysis modal
parameters typically used to assess the model’s accuracy. Finally,
Bayesian estimation is incorporated to condition the update prob-
lem. Bayes estimation involves the use of relative confidence mea-
sures for the parameters being updated and the observed data used to
guide the estimation. This important modification leads to a more re-
liable algorithm, especially in the presence of small sensitivity coef-
ficients, large model errors, and correlation between parameters.

The remainder of the paper is organized as follows. In Section 2, the
basic SB-EBE theory and algorithm is reviewed. In Section 3, the
new modified algorithm is developed theoretically and its imple-
mentation is detailed in Section 4. Numerical and experimental re-
sults are given in Section 5, and Section 6 offers concluding
remarks.

2.  REVIEW OF BASIC THEORY AND ALGORITHM

The governing equations for linear time-invariant structural dynam-
ics are given as

(1)

where ,  and  are the stiffness, damping, and mass matrices
from the finite element model,  is a vector of displacements,  is
a vector of applied forces, and  maps those forces to the associated
degrees of freedom of the model. The homogeneous form of Eqn. 1
leads to the following undamped generalized eigenproblem:

(2)

where  is the eigenvalue, which is equal to , the square of the
undamped natural frequency, and  is the associated eigenvector,
which is the physically the normal (i.e. undamped) mode shape.

The basic theory, developed by Hemez and Farhat (Univ. of Colo-
rado, 1993), determines the change  to a set of physical parame-
ters of the model which minimize the norm of the dynamic force
residual, viz.

(3)

 is the dynamic force residual for mode , defined as

(4)

where  is an experimentally-determined frequency of the struc-
ture for mode , and  is the associated mode shape. Unfortunate-
ly, the degrees of freedom (DOF) at which the mode shape is
sampled from test is typically much smaller than the number of DOF
in the finite element model which defines  and . Therefore, to
apply Eqn. 4, either the model must be reduced to the measurement
DOF, or the measured portion of the mode shape must be expanded
to the displacement basis of the model. Although it is more compu-
tationally intensive, the basic algorithm uses an expansion of the
mode shapes to compute the dynamic residual.

The theoretical basis for correcting the model using the dynamic
force residual is as follows. If the “correct” model is given as

(5)

and from Eqn. 2

(6)

then

(7)

Hence,  is a function of both magnitudes and locations of the
model errors [2-3]. The basic Hemez algorithm consists of three key
steps: mode shape projection, error localization (parameter selec-
tion), and parameter estimation.

2.1  Mode Shape Projection

To derive the proper projection operator from Eqn. 3, we must par-
tition the mode shape  into its measured and unmeasured compo-
nents, and also partition the associated columns of the mass and
stiffness matrices. Then

(8)

where  is the mode shape for mode  at the measurement DOF,
 is the unmeasured portion of the same mode shape, and ,
, , and  are the measured and unmeasured column sets of

the stiffness and mass matrices. The mode shape projection directly
results from minimizing the dynamic residual with respect to , as-
suming no change in the model parameters, viz.

(9)
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(10)

 can be termed the impedance or dynamic stiffness of mode .

After the projection operator for mode  is determined, the mode
shape is projected and the dynamic force residual  with respect to
the model DOF can be computed. Recalling Eqn. 7, the DOF exhib-
iting the largest force residuals will be associated with the set of
model elements whose parameters are significantly in error. There-
fore, it is reasonable to select those parameters which cause the larg-
est perturbations to the element matrices associated with a set of
model DOF , where  is above some threshold level. In the
original SB-EBE method this process is termed “zooming.”

2.2  Parameter Estimation

The final step, after projecting the mode shapes and choosing which
model parameters to vary, is to compute the updated parameter val-
ues which minimize the sum of dynamic force residuals over a set of
modes, viz.

(11)

where

(12)

Here,  is the sensitivity of  to the parameters being updated.

3.  NEW ALGORITHM: THEORY

The motivation for developing a new algorithm based upon the SB-
EBE method came from tests of that algorithm on a moderately sim-
ple beam structure which will be reviewed in a later section. These
tests revealed a number of potential problems, including unusually
small magnitude parameter updates leading to slow convergence,
and convergence to poor solutions as measured by relative frequen-
cy error and mode shape correlations.

Based on the above concerns, the basic theory and algorithm was re-
worked to incorporate:

• Consistent linearization of the optimization problem to include
coupling between mode projection and parameter estimation

• Generalization of the modal error vector

• Inclusion of Bayesian estimation concepts; e.g. weighting by the
force error covariance, incorporation of parameter confidence

We now proceed to detail these modifications.

3.1  Consistent linearization of the optimization problem

The solution proposed by the basic algorithm is staggered in the fol-
lowing sense. Although the model is being adjusted in the overall

procedure, this adjustment is ignored in the determination of the
mode shape projection. While this simplifies the theory somewhat,
it may introduce a serious computational cost. This is because, by ig-
noring the coupling between the projection and the parameter esti-
mation, the curvature of the parameter space is poorly estimated.
The result is that the curvature is artificially larger, leading to small-
er parameter changes and much slower convergence.

This problem can be alleviated by adding a correction to the project-
ed partition of the mode shapes which accounts for its dependence
on the parameter estimation problem. Using

(13)

the linearization of the first-order conditions for Eqn. 3 leads to the
following coupled system of equations:

(14)

where

(15)

Reducing the system via Schur complements, we determine

(16)

where

(17)

Comparing Eqn. 11 to Eqn. 17, it is seen that the effect of the con-
sistent linearization is to reduce the positive curvature of the design
space. This formulation introduces only a modest increase in com-
putations as the factorization of  is already computed during
the mode shape projection step and thus can be saved for use in Eqn.
16. The introduction of this consistent linearization, however, dra-
matically improves the rate of convergence of the algorithm, as will
be shown in the numerical example problem.

3.2  Generalization of the modal error vector

The functional selected for the optimization is not the only clear
choice for performing model update. Its advantage is that it does not
require solving for the modes of the model, and tracking those ana-
lytical modes with respect to the test modes. Its disadvantage is that
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the updated model may not improve the errors between the analysis
and test frequencies, or improve the correlation of the mode shapes.
In fact, these accuracy indicators may be significantly degraded, and
the resultant model cannot be judged as accurate as the initial model.

In seeking to understand the convergence of the basic algorithm to
poor solutions as measured by relative frequency and mode shape
errors, it is helpful to compare the technique to traditional estimation
algorithms. First, we can re-write the mode  contribution to the ob-
jective function in equivalent modal parameter terms, viz.

(18)

where  ranges over all modes of the finite element model, and

(19)

Here  is themodal assurance criterion, which is a measure
of the correlation between two mode shapes, in this case model
mode  and test mode . The parameter  is the modal mass of the
test mode shape. From Eqn. 18, the contribution to the overall dy-
namic force residual from test mode  is equivalent to summing up
the squares of the differences between test eigenvalue  and each of
the eigenvalues of the model, which are scaled to the correlation be-
tween the test model shape and the associated model mode shape. If
small correlations exist between the test mode shape and any model
mode shapes with vastly different frequencies, the contribution of
that term can dominate the performance index. This has the effect of
biasing the algorithm away from reconciling test and model modes
which correspond more closely in both mode shape and frequency.

To alleviate this problem, we can replace the modal force error by a
generalized modal error , where

(20)

This result can be obtained approximately by defining  as

(21)

which implies that the generalized modal error is a dynamic dis-
placement residual quantity, rather than a dynamic force residual.

3.3  Including Bayesian estimation concepts

Although the parameters being estimated usually evolve from some
nonzero initial estimate, the basic algorithm places no relative con-
fidence on these initial values with respect to the test data used for
model adjustment. The quantitative result is that there is no penalty
placed on the magnitude of the parameter change. Therefore, any fi-
nal parameter value, no matter what magnitude or sign, is judged as
superior to the original estimate as long as the sum of the dynamic
force residuals have been reduced. In actuality, there are usually
both hard constraints placed on the parameter values and some de-
gree of confidence in the initial parameter estimates. Furthermore,
the test data used for model adjustment is often imperfect, and the
confidence in the data varies depending on whether frequency or
mode shape component estimates are being considered.

A popular approach in estimation theory to address the aforemen-
tioned concerns is the use of Bayesian estimation [4]. For linear
structural dynamics applications such as the present model updating
problem, Bayesian estimation reduces to a generalized least-squares
problem [5]. We can modify the performance index of the basic al-
gorithm as follows:

(22)

where

(23)

 is the covariance matrix of the initial parameters being estimat-
ed,  is the covariance matrix of the components of measured
mode shape ,  is the variance of the square of the measured
modal frequency, and  is the mode shape projection matrix.

The primary difficulty in introducing the Bayesian estimation con-
cept, or equivalently a maximum likelihood estimator, is that the er-
ror quantity being minimized is not directly a measured quantity,
hence the covariance being introduced is not simply the variances of
the test data. Instead, the dynamic residual is a nonlinear function of
the data, the model matrices and the mode shape projection, which
is itself a function of the model and based on the minimization of the
overall functional. Therefore, although introducing statistical mea-
sures can, in general, increase the robustness of the algorithm, the
approach also leads to additional nonlinearities in which mode shape
projection and modal error covariance estimates are coupled. In the
present work, this nonlinearity is handled in a very cursory manner
by computing an initial estimate of  using only the measured
component of the mode shapes. That estimate is used to compute a
estimate of the mode shape projection. The mode shape projection is
then used to re-compute a better estimate of , which is then used
to complete the algorithm. This is basically a predictor-correction
approach and seems to work adequately for the applications studied.
Other possibilities might include using a completely different mode
shape projection algorithm to compute .

4.  NEW ALGORITHM: IMPLEMENTATION

In this section we review the step-by-step procedure for the new
modified algorithm and discuss implementation issues.

4.1  Summary of Modified Algorithm

The following procedure represents one pass or iteration through the
updating algorithm. Because of the inherent nonlinearity of the op-
timization, convergence to a solution can require many iterations.
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• Initialize

• For i=1 to N

• Form  and partition into

• Predict

• Solve

• Correct

• Solve

• Compute ,  where

• Compute , where

• Solve

• Sum:

• Solve

• Update

4.2  Control of Curvature Estimate

As mentioned in the preceding sections, a consistent linearization of
the optimization is employed in the modified algorithm to improve
its convergence properties. Caution must be exercised, however, as
this linearization does not guarantee a positive-definite hessian. This
is problematic because, without active intervention by the user, the
algorithm will converge to a point of maximum error rather than
minimum error when in a region of the parameter space with nega-
tive curvature. The present procedure offers two mechanisms for
controlling the curvature to avoid this result. The first is the use of
Bayes estimation, which conditions the estimation problem by con-

tributing a penalty term on the change in the parameter estimates.
Numerically, this term provides a positive-definite contribution to
the hessian which can be adjusted to reflect the analyst’s relative
confidence in the initial parameter estimates.

The second mechanism for controlling the curvature estimate is
through the use of a constant  which parameterizes the lineariza-
tion between that of the basic algorithm  and the modified
algorithm . This constant controls the contribution in the
linearization of the coupling between the mode shape projection and
the parameter estimation. This can be seen in the detailed procedure
above, where the contribution to the curvature of mode  is added to
the hessian matrix . Note that the basic algorithm is always guar-
anteed positive-definite, but that guarantee comes at the cost of a
poorer estimate of the curvature. The use of the parameter  allows
that cost to be controlled optimally by the user.

4.3  Model Reduction

Rather than projecting the mode shapes, reduction of the model to
the measurement degrees of freedom can be employed. This is often
avoided because the reduction of a complex model down to the small
number of DOF actually measured will introduce errors in the pre-
dictive accuracy of the model which lead to nonzero dynamic resid-
uals and hence inappropriate parameter corrections. A possible
compromise is to employ a component mode synthesis type of re-
duction such as the Craig-Bampton technique, which augments a
static condensation to the measurement DOF with a set of general-
ized DOF spanning the lowest eigenmodes of the dynamics omitted
in the static condensation. Typically, the addition of a small number
of generalized DOF is sufficient to ensure that the reduced model
can predict the eigenmodes of the full-order system. The experimen-
tal modes would then be projected into this slightly larger subspace.

4.4  Statistical Significance of the Parameter Estimates

An advantage of Bayes estimation is that it allows the analyst to as-
sess the confidence intervals for the final estimates of the parame-
ters, as a function of their initial covariances, their sensitivity to the
data used in the estimation, and the covariance of that data. A linear-
ized estimate of the covariance of the updated parameters is given by

(24)

evaluated at the point of convergence. From this result, the standard
deviation of the parameters can be determined by taking the square
root of the diagonal elements of . Of course, this statistical quan-
tity is only as valid as the covariances of the data and the initial pa-
rameters. The updated variances relative to their initial values are
useful, however, in determining whether the change in parameters is
significant and based on the data.

5.  APPLICATIONS

5.1  Numerical Data: Planar Truss Structure

The first example from Reference [1] was chosen to test the imple-
mentation of the modified algorithm and assess its performance rel-
ative to the basic SB-EBE procedure. This example considers a free-
free planar truss with 44 translational DOF, 7 of which are mea-
sured. For this comparison, the first 5 flexible modes are used to up-
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date the model, and the only parameters being updated are the elastic
modulus of the two elements modified. Furthermore, the test data is
assumed to be perfect (zero variance), which implies that the Baye-
sian covariance weights are not used. Thus the only differences be-
tween the two algorithms are the consistent linearization of the
optimization problem and the weighting of the modal force error.

The results are documented in Table 1. Note that, although the use
of the flexibility weighting do help to speed the convergence, it also
introduces a large computational overhead, especially when the
weighting matrix is full rather than sparse. Note also that updating
the weighting matrix at each iteration as the stiffness was updated
did not improve the convergence of the algorithm. The need for
weighting the modal error vector is dictated more by the quality of
the final solution when the data is imperfect than by the convergence
of the algorithm. Finally, it was found that using the full extent of
the consistent linearization led to a negative definite curvature
which caused the algorithm to diverge. Therefore,  was reduced to
0.95, which results in the fastest convergence.

The cases documented above were based upon the same conver-
gence criterion. The parameter results for the basic SB-EBE algo-
rithm and the modified algorithm with  are shown in Figure
1. Note here that, even at 180 update iterations, the basic algorithm
has still not reached the correct updated parameter values, while the
modified algorithm with its consistent linearization has converged to
within 1% of the correct values in less than 30 iterations

Figure 1: Convergence of Parameters for Numerical Example

5.2  Experimental Data: LADDER Structure

The experimental example problem is a tubular welded structure
representative of an automotive engine support. The goal of the
model updating was to determine unknown joint compliance param-
eters, and to adjust the basic properties, in order to correlate the first
14 modes identified from test. The test setup is shown in Figure 2.

Figure 2: Modal Testing Setup for LADDER Structure

The structure was instrumented with 96 accelerometers grouped in
16 locations in order to extract both translational and rotational re-
sponse at beam cross-sections throughout the structure. The finite el-
ement model of the structure is shown in Figure 3; it is a NASTRAN
model consisting of CBEAM elements, with spring elements intro-
duced to model the joint compliances. Rigid offsets were used to de-
termine the responses at each accelerometer location, and
instrumentation mass was included. The correlation of the modal pa-
rameters between the test-identified modes and the initial (pre-test)
analysis model is documented in Table 2.

Figure 3: Finite Element Model of LADDER Structure

After attempts to reconcile the model using the basic SB-EBE pro-
cedure failed, the modified algorithm was developed and applied to
this problem. The update evolved as follows: the joint spring param-
eters were estimated based on the first 8 flexible modes with the
model statically reduced to the 96 sensor DOF. This implied that no
mode shape projection was performed. Then, cross-sectional param-
eters  were added and estimated along with joint rotational

Table 1: Comparison of Convergence Using Modified
Algorithm

Method Weighting Matrix
# update
iterations

Basic SB-EBE N/A 180

Modified
(modal force error minimization)

25
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(held constant)

8
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springs using test modes 1-9 and model statically reduced to the sen-
sor DOF. The final values were estimated based on modes 1-12 with
same parameters plus  and using the model reduced to mea-
sured DOF + torsional DOF for model grids. This final estimation
thus required that the mode shapes be projected.

The resultant parameter values are given in Table 3. The correlation
of the updated model to test for the first 14 modes are documented
in Table 4. Observe that the frequency errors have been reduced
from a maximum of 43% to below 4%, while the mode shape corre-
lations have been maintained or slightly improved. Note also from
the parameter update results that the updated coefficients of varia-
tion (COV), which is the standard deviation of the parameter ex-
pressed as a percentage of the parameter value, is significantly
smaller than the assumed initial COV. This implies that the param-
eters were highly sensitive to the modal data used in the estimation.
In conclusion, the present modified algorithm performed very well
using the experimental data, resulting in a highly accurate updated
model.

6.  CONCLUDING REMARKS

An algorithm for updating finite element models using modal data
has been presented. The algorithm minimizes a generalized dynamic

residual which is a function of the experimental modal parameters
and the model mass and stiffness matrices. The present algorithm is
a modification of a previous method for sensitivity-based element-
by-element model updating and incorporates a generalized error
weighting, consistent linearization and Bayesian estimation. The al-
gorithm has been demonstrated on numerical and experimental data
and has been shown to be an efficient and effective approach for es-
timating parameters to reconcile test and analysis models.
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Table 2: Initial LADDER Model/Test Comparison

Test
Mode

Test
Frequency

(Hz)

Model
Mode

Model
Frequency

(Hz)

%difference
Frequency

Modal
Assurance
Criteria

1  78.9674 1 72.3633 -8.36 0.9973

2 170.6259 3 174.9456 2.53 0.9963

3 174.4670 2 161.5404 -7.41 0.9934

4 214.7231 4 206.3898 -3.88 0.9981

5 250.9062 5 255.1062 1.67 0.9951

6 312.1717 7 318.6140 2.06 0.9580

7 315.7890 6 312.8396 -0.93 0.9516

8 317.7661 9 368.6281 16.01 0.9486

9 330.2652 8 333.6956 1.04 0.9968

10 432.5194 10 451.6765 4.43 0.9937

11 518.5953 11 534.4661 3.06 0.9890

12 563.6540 14 806.4039 43.07 0.8115

13 612.8141 12 631.6433 3.07 0.9816

14 674.3648 13 678.9766 0.68 0.7993

Table 3: Parameter Update Results for LADDER Structure

Parameter
Final Value

(relative to initial)
Initial COV Updated COV

0.4250 100% 0.49%

0.2580 100% 0.00153%

104.0 100% 3.58%

1.4621 100% 1.39%

0.9415 3% 0.00663%

0.9178 3% 0.0191%

1.0091 3% 0.00661%

Kuy

Kuy

Kθx

Kθy

Kθz

I 1

I 2

J

Table 4: Final LADDER Model/Test Comparison

Test
Mode

Test
Frequency

(Hz)

Model
Mode

Model
Frequency

(Hz)

%difference
Frequency

Modal
Assurance

Criteria

1 78.9674 1 78.8034 -0.21 0.9978

2 170.6259 2 169.6736 -0.56 0.9963

3 174.4670 3 174.6665 0.11 0.9931

4 214.7231 4 218.2671 1.65 0.9984

5 250.9062 5 249.0289 -0.75 0.9957

6 312.1717 6 307.9859 -1.34 0.9894

7 315.7890 7 315.5987 -0.06 0.9789

8 317.7661 8 323.0028 1.65 0.8792

9 330.2652 9 324.1070 -1.86 0.9521

10 432.5194 10 435.3196 0.65 0.9955

11 518.5953 11 514.9591 -0.70 0.9894

12 563.6540 12 542.8199 -3.67 0.8724

13 612.8141 13 615.0687 0.37 0.9732

14 674.3648 14 673.2796 -0.16 0.8250


